文章摘要:针对小水电高渗透率地区网供负荷预测准确率较低的问题,提出一种基于人工智能和残差修正的网供负荷预测模型,对蕴含在网供负荷中的周期分量和随机分量进行预测和结果修正。采用集合经验模态分解(EEMD)提取网供负荷中不同频段的分量,构建基于模态分量的多层次门控循环单元(GRU)网络模型,通过提升网络模型的复杂程度提高测试集上预测结果的准确率。此外,引入费歇值表征降雨对小水电出力的累积效应影响,在预测结果输出环节加入费歇信息加权的马尔科夫(FI-WMC)残差修正步骤,降低小水电出力不确定性导致的预测结果偏差。仿真验证的结果表明,多层级EEMD-GRU-FIWMC模型可以更好地适用于小水电高渗透率地区的网供负荷预测,在小水电渗透率为20%以上的地区,相对于传统的GRU模型和无残差修正模型,其预测准确率分别提升7.61%、3.85%。
文章关键词:
论文分类号:TM715;TP18
